
Project no. 609551
Project acronym: SyncFree
Project title: Large-scale computation without synchronisation

European Seventh Framework Programme

ICT call 10

Deliverable reference number and title: D 5.3
Plan and design of massive scale crowd-sourced
empirical validation.

Due date of deliverable: September 29, 2015
Actual submission date: 4 February 2016

Start date of project: 1 October 2013
Duration: 36 months
Name and organisation of lead editor
for this deliverable: Rovio Entertainment Oy
Revision: 1.1
Dissemination level: CO

SyncFree Deliverable D 5.3(v1.1), 4 February 2016

CONTENTS

Contents

1 Executive Summary 1

2 Large-Scale Evaluation inspired by the FMK application 3
2.1 Large-Scale Evaluation inspired by the FMK application 5
2.2 Tools . 6

3 Rovio: Ad Counter 6
3.1 Hypothesis . 7
3.2 Experiment Description . 7
3.3 Experiment Design . 8

3.3.1 Variables . 8
3.3.2 Architecture . 8
3.3.3 Measurement tools . 9

3.4 Budget calculation . 10
3.5 Further evaluation . 10

4 ESL: Configuration management 10
4.1 Brief overview of ESL’s contributions 10
4.2 Problem description . 11
4.3 Requirements . 12
4.4 Business Case, Necessity . 12
4.5 Assessment From A Real Customerś Perspective 13
4.6 Evaluation . 13
4.7 Hypothesis . 14
4.8 Experiment Description . 15
4.9 Experiment Design . 16

4.9.1 Variables . 16
4.9.2 Architecture . 17
4.9.3 Tools . 18

4.10 Budget calculation . 18

5 Large-scale evaluation of Lasp 19
5.1 Lasp and Selective Hearing . 19
5.2 Lasp evaluation scenarios . 20
5.3 Scale and ramping up of the Lasp evaluation 21
5.4 Final remark . 22

SyncFree Deliverable D 5.3(v1.1), 4 February 2016, Page 2

1 EXECUTIVE SUMMARY

1 Executive Summary

The document describes the experiments proposed by the Syncfree partners to
validate CRDT solutions. All these experiments evaluates efficiency of using the
CRDTs solutions when scaled either in number of replica, database, updates or a
combination of them. The experiment results would underline the benefits of using
a CRDT solution in a real world problem.

We will use the FMK use case to evaluate the transactional support in Antidote
platform and see if it can resolve problems identified by Trifork when using Riak.

The FMK system is used by the Danish Healthcare to track patients and their
treatment, in particular their prescriptions. All events relating to the patients are
recorded, such as a drug that have been administered by a nurse or handed out
at a pharmacy. The FMK has high availability as one of its main design criteria.
This is based on the fact that, in the context of health care decisions, having some
information is better than none and often having old information is better than
none.

This use case is the one that explores the insights of SyncFree the most in terms
of going beyond CRDTs and finding the limitations — if any — of the approach.
Due to the criticality of the FMK system, we will simulate (a subset of) its func-
tionality in a controlled environment using fake patient data.

The decision of using the FMK use case instead of the Virtual Wallet use case is
based on the feedback received at the second year review, which recommended that
we investigated the possibility of using the FMK use case. It has turned out that
the FMK use case is good for exercising the innovations of SyncFree in relation to
specific problems identified by the industrial partner Trifork. As the moment, we
expect to be able to scale the FMK experiments to appropriate numbers using only
free computing resources available in Grid 5000. Thus, we are not requesting any
additional funds beyond what has already been allocated to Rovio.

The Rovio use case verifies the effectiveness of using a geo-replicated CRDTs as
the alternative backend store for Ad serving logic that handles massive concurrent
user load. ESL will validate the use of CRDTs as the solution for solving the
business problem of managing global configurations across multiple nodes. The
Lasp evaluation will evaluate scalability and practicality of Lasp as an application
framework both in the data center and edge cases.

The following table capture the important parameters for the experiments.

SyncFree Deliverable D 5.3(v1.1), 4 February 2016, Page 1

1 EXECUTIVE SUMMARY

Experiment Partner(s) Backend No. of
Nodes

Peak User
Load

Ad
Counter

Rovio Riak 2.0 18 Riak
nodes in 2
DC

8000 re-
quests/sec

Configuration
Manage-
ment

ESL Antidote 5-120
nodes in
1-2 DC

NA

FMK KL, INRIA, Trifork, NOVA Antidote 100-1000
nodes in
2-10 DC

To the
breaking
point

Lasp UCL Riak core 1,000-
10,000

NA

SyncFree Deliverable D 5.3(v1.1), 4 February 2016, Page 2

2 LARGE-SCALE EVALUATION INSPIRED BY THE FMK APPLICATION

Contractors contributing to the Deliverable

The following contractors contributed to the deliverables:

Rovio Vivek Balakrishnan.

ESL Viktória Fördős, Csaba Hoch, Diana Corbacho.

INRIA Alejandro Tomsic, Santiago Alvarez, Taylor Crain, Marc Shapiro.

UNL Nuno Preguica, Valter Balegas, Sergio Duarte.

UCL Peter Van Roy, Chris Meiklejohn.

UNIKL Annette Bieniusa, Deepthi Akkoorath.

Basho Torben Hoffmann.

2 Large-Scale Evaluation inspired by the FMK

application

The aim of the experiment is to evaluate the availability and scalability of the
Antidote CRDT platform. In particular it will be investigated if the stronger guar-
antees such as atomic transactions and invariant preservation are of practical use
and without bottlenecks.

We will simulate the FMK use case from WP1 in a controlled environment
for evaluation. The FMK system manages medicine prescriptions for patients in
Denmark.

Trifork has identified a need for atomicity on different operations. This require-
ment mostly arises from the need to atomically update information in more than
one object and from the use of non-normalized data. To address this requirement,
we will use Antidote HATs (Highly Available Transactions) and evaluate its use in
a real-world scenario. Each operation in the application is implemented as a trans-
action using appropriate CRDTs. Each of these operations consists of multiple read
and/or update operations involving one or more entities in the FMK system.

In FMK, it is paramount to maintain availability even it is is impossible to
access the most recent version of the data. In this context, it is important to have
information on the potential divergence of the accessed information. To provide
such information, we will rely on mechanisms for providing divergence information
developed in the context of the project.

The Antidote FMK will be developed and evaluated incrementally, in the fol-
lowing steps:

1. Mimic subset of existing system with eventual consistency.

2. Use transactions and invariants preservation mechanisms.

3. Investigate partial replication.

SyncFree Deliverable D 5.3(v1.1), 4 February 2016, Page 3

2 LARGE-SCALE EVALUATION INSPIRED BY THE FMK APPLICATION

4. Evaluate information on divergence.

Using Antidote for implementing a subset of the real FMK system, i.e. without
support for advanced features such as transactions, will give us feedback on how
well Antidote performs and help us weed out problems. This will also serve as a
baseline to measure the overhead introduced by the additional guarantees provided
by Antidote.

Once the base functionality is in place, we will look at maintaining consistency on
operations that access multiple data items. This addresses a problem that current
implementation of Riak cannot address (and requires special handling in the code
of applications, leading to a lot of coding). We will use both the Antidote support
for transactions and the mechanisms to maintain invariants.

We will use the partial replication as a principled approach to maintain a sub-
set of the data in different nodes of the system: hospitals, medical facilities and
pharmacies.

In a real deployment, due to costs (and problems that arise from increasing the
replication factor), it is not possible to maintain a copy of all the patients’ data in
the hospitals. However, it is important for an hospital to have a copy of the data of
patients that are being treated in that hospital. Otherwise, there might be ongoing
treatments that the hospital staff is unaware of. Some treatments could cause the
emergency treatment to become lethal.

We will use partial replication to have, in a given hospital or medical facility, a
copy of data for patients being treated in the hospital and for the patients that live
close to the hospital.

As for pharmacies, each pharmacy will get information on the prescriptions
assigned to the pharmacy.

Finally, we plan to evaluate the mechanisms for providing information on data
divergence. We are still studying which mechanisms are more appropriate in this
case, but we expect to evaluate, at least, a mechanism for providing information on
data staleness.

SyncFree Deliverable D 5.3(v1.1), 4 February 2016, Page 4

2 LARGE-SCALE EVALUATION INSPIRED BY THE FMK APPLICATION

2.1 Large-Scale Evaluation inspired by the FMK applica-
tion

In the FMK experiment we will try to simulate an environment similar to the
existing FMK deployment. As such, we will simulate both the backend of the
system, consisting in a number of data centers, and the frontend consisting in
hospitals and pharmacies. The amount of records in the system will be defined by
the sum of the number of patients, doctors, and other medical staff. Operations
consist of transactions reading and updating records. The sytem will be evaluated
by measuring both performance and scalability as well as its tolerance to faults and
reconfiguration.

For performance we will measure the throughput T (the number of transactions
executed per second) and latency of transactions (L) as the load increases. To gen-
erate the workload, we will use statistics provided by Trifork to simulate a realistic
ratio between different operations. Besides the experiments that simulate realistic
workloads, we will also create a series of benchmarks to measure how performance
is influenced by a number of parameters (including number of operations in a trans-
actions, varying ratio of reads and writes). Furthermore, given that availability is
essential we will measure the impact of various types of failure scenarios (includ-
ing network partitions, node failures and periods of high load) on performance,
availability, and correctness.

We will measure the scalability of the system, by evaluating how performance
(throughput and latency) vary with an increasing number of nodes, both at the
backend and in the peripheral entities (hospitals, medical facilities and pharmacies).
For this the number of data centers will range from 2 to 5. Each data center consists
in a number of nodes that store data, with data being partitioned among the nodes.
We will use from 5 to 40 nodes in each data center. The number of frontend nodes
that simulate hospitals, medical facilities and pharmacies will also be varied from 10
up-to hundreds. Each hospital will be simulated by 2 to 3 nodes, holding a partial
replica of the data. Medical facilities and pharmacies will be simulated by 1 to 2
nodes, also holding a partial replica of the data.

Additionally, we will increase the size of the database, increasing the number of
patients, hospitals, pharmacies and medical facilities. We will use ratios between
these entities, provided by Trifork, to guarantee a realistic evaluation.

Hardware All experiments will be performed on the public Grid’5000 infrastruc-
ture. Given that Grid’5000 consists of nine sites located in different cities across
France, with each site containing from approximately 20 to 300 nodes, we believe
it is an appropriate platform to execute the FMK experiment. Also, as the FMK
application maintains information of a single country, simulating it in an infras-
tructure located in a single country mimics the real deployment more closely than
using some international cloud provider.

Within the Grid’5000 infrastructure each of the 9 sites are divided into several
clusters, with the compute, storage and network hardware being homogeneous per
cluster. Thus, each of the 2 to 5 DCs will be run at different sites, each within a
single cluster. Separate DCs will be running similar, but not equal hardware using
nodes with 2 Intel CPUs each with 4 cores and 10 gigabit network connections

SyncFree Deliverable D 5.3(v1.1), 4 February 2016, Page 5

3 ROVIO: AD COUNTER

within the cluster.
The medical facilities, pharmacies, and hospital nodes will be run across all nine

sites of Grid’5000 in separate clusters from the DCs. This means a wide variance
in hardware and location as we might expect in a realistic environment.

Risks Through through Grid’5000 we have the advantage of not needing to pay
for using the infrastructure, we also increase the risks of having difficulties when
compared to using commercial infrastructures. The first risk is that the infras-
tructure is shared with many other researchers, making it difficult to reserve large
portions of the nodes for long periods of time. The second is that each site consists
of different hardware that is managed by different groups, sometimes meaning us-
ing different rules for running the experiment at different sites. The third is that
the infrastructure itself is experimental meaning frequent maintenance, possible
inconsistent performance variations, and reservation and node errors. This said,
at present we are able to run basic experiments across several sites with close to
one hundred nodes, but running a realistic FMK experiment should be much more
challenging.

2.2 Tools

Basho Bench is a benchmarking tool to conduct repeatable performance and
stress test. The pluggable driver interface of Basho Bench allows it to be used as
clients of FMK application. Thus measurements could be taken at the application
level operations as well as for micro benchmarks. This will be initially used for
quick prototyping the experimental infrastructure.

MegaLoad is a scalable load testing tool that provides automatic deployment on
cloud environments. At the later stages of evaluation MegaLoad will be used for
deploying large number of nodes and clients to conduct performance and stress test.

3 Rovio: Ad Counter

The user experience of a game player can be improved by decreasing the round-trip
latency of user requests to the game servers. In the current “free to play” ad-
oriented games, the above statement is also valid for the ad content that is served
to the user. The overall round trip latency can be reduced by spreading the user
load across several geographically-separated data centers (DC) and serving the user
from the closest data center. As a part of this process, it is important that the
datastore is also replicated in multiple datacenter (geo-replication).

Rovio’s Ad Service keeps track of impressions and clicks for ads per cam-
paign/ad/country. Typically, these counts have some upper bound after which the
ad should not be shown anymore. The Ad Service runs on multiple service nodes
in a single DC and each of those nodes has its own document for the impression
and click counters in Riak, in order to avoid write conflicts.

Each campaign/ad/country info that tracks the impression (how many times
the ad was shown to user) and click (how many times the user clicked on the

SyncFree Deliverable D 5.3(v1.1), 4 February 2016, Page 6

3 ROVIO: AD COUNTER

ad) counters are stored as a domain object. Impressions and Clicks are standards
KPI measures reported for the Advertisers in the Ad industry. The most common
acronyms used in these measures are CVR (conversion rate, impressions driving
visits/install) and CTR (click-through rate, click per impression)

These counters are implemented as a simplified version of Riak’s counter CRDTs.
In the massively large-scale experiment that is the aim of WP 5, Rovio will compare
and validate geo-replication in CRDTs to the simple single-DC CRDT in the context
of its Ad Service.

3.1 Hypothesis

The aim of the experiment will be to validate the following hypothesis:

Geo-replicated CRDTs have as least as good performance as that of
single DC solutions, while honouring the service restrictions and being
easier to program correctly, especially when scaling is required.

Service restrictions for an ad campaign define how the ad is to be displayed.
E.g., a campaign may have certain rules associated with it, such as serve only in
US and Finland. The rules may also have a limit associated with them, such as
serve until 50 impressions in US and 100 impression in Finland and 500 impressions
globally. The Ad service serves the ad to the user based on such restrictions.

This experiment will validate that the Riak CRDTs, with geo-replication, im-
prove the user experience without significant degradation in performance, for a
distributed large scale service with massive user load.

3.2 Experiment Description

In the following, impact relates to:

• Geo-replication should not introduce additional service latency.

• Ad service should serve ad only till the limit mentioned in above question is
reached. (campaign performance).

The experiment will compare the impact of geo-replicated CRDT on Rovio’s ad
serving logic to the existing simple intra-DC CRDT. We will measure this impact
on overall ad content service rather than on the datastore. Observing the impact
on ads content served from the Ad Service node is a good measure on the latency
experienced by the game user. Further, it will also validate that the upper bound on
ad traffic is respected irrespective of the delay introduced by inter-DC replication.

The legacy single-DC CRDT experiment will be the control experiment for com-
paring the impact of geo-replicated CRDTs. Both experiments will target a peak
user load of 8 000 requests/second (as observed in production) against a production-
like data store. The data will not be a live production replica, but it will be a
production snapshot from an earlier date; the traffic is not live traffic, but either is
synthetic or is replayed from anonymised traces of production traffic.

Both the geo-replicated CRDT and single-DC CRDT tests will use the same
production snapshot and traces. Both tests will be repeated multiple times on

SyncFree Deliverable D 5.3(v1.1), 4 February 2016, Page 7

3 ROVIO: AD COUNTER

varying hours of the day to cancel the bias introduced due to the computational
load of the data centers.

3.3 Experiment Design

3.3.1 Variables

The experiments will measure the number of ads served (N) and the service latency
(L) as a function of the independent variables user load (U) and experiment duration
(T).

The simple single-DC CRDT experiment will measure Ncrdt (the numbers of ads
served using CRDTs) and Lcrdt (the service latency measured when using CRDTs).
Likewise, the geo-replicated experiment will measure Ngeo-crdt and Lgeo-crdt . The
geo-replicated experiment allows for a small deviation in the upper bound for the
number of ads served (∆geo-crdt), which will be capped at 10% of Ncrdt .

3.3.2 Architecture

The planned experiment is not a live production large-scale test. Instead, the user
load will be obtained from a load generator and the experiment will be tested in a
cloud environment separate from Rovio’s production cloud. The following reasons
explain the above decision:

• Rovio cannot conduct the experiment against its services in production, as
this would degrade the game user experience.

• A live experiment would require to update the client application; as users
may choose to ignore the update, the numbers would not faithfully represent
reality.

The user may choose to ignore the game update. On the other hand, with a
load generator the we can vary the user load to the experiment which is beneficial.
The client application here actually refers to the game, not the Ad service.

The experiments will use Riak 2.0 instead of SyncFree’s research platform An-
tidote as it is not production ready. Also, as Antidote is based on riak-core, and
its CRDTs are compatible with Riak 2.0, we believe that the results obtained with
Riak 2.0, are likely to apply to Antidote also, and will highlight the power of the
CRDT concept in general.

The set-up of the test environment is sketched in Figure 1. Rovio will set up
two identical cloud environments, separate from its production cloud, in Amazon
AWS locations, Ireland and US-East. The environment will use Riak 2.0, which
includes support for CRDTs. We will establish a VPN tunnel across the Amazon
environments for geo-replication. Each of these environments will host a stripped-
down Ad Service, that is linked only to the Ad Livestats service. The Ad Service is
the user-facing endpoint that serves ads. The Livestats service is the book-keeping
service for the Ad Service, and maintains ad tracking data.

The user load will be generated from an in-house load generator tool called
PerformancePig (see below). These instances will be run from one of Rovio’s staging
environment separate from the experiment setup. We will leverage on the existing

SyncFree Deliverable D 5.3(v1.1), 4 February 2016, Page 8

3 ROVIO: AD COUNTER

Figure 1: Test environment for Ad use-case.

PerformancePig instances in Rovios staging environment. This way Rovio doesnt
need to deploy PerformancePig instances in the newer AWS environment. This was
decision taken to reduce the time to actual experimentation.

The experiment setup will have an Amazon Elastic Load Balancer (ELB) to
evenly distribute the user load across the Ad Service.

3.3.3 Measurement tools

JMonitor is a distributed resource monitoring tool written in Java that is used by
all Rovio services to log and monitor service access. This tool logs the performance
timing for all important service calls and presents them at varying levels of granu-
larity. The tool is also capable of monitoring a distributed counter. The experiment
will use this tool in Ad Service to measure the number of ads served (N) and service
latency (L) values.

PerformancePig is Rovio’s inhouse load generator tool to run and visualize per-
formance test data. Together the with Woodpecker library, PerformancePig can be
used to deploy test nodes in EC2 instances to simulate peak loads. The tool has
means to calculate the average latency, latency range, transactions per second and
user count for every service call of the test suite. The experiment will use this tool
to generate user load for the experiments.

Basho Bench is a benchmarking tool from Basho for conducting stress and
performance tests and to produce performance graphs. It is exposed as a pluggable
driver that can be extended using Erlang. Basho Bench will primarily be used
for quick prototyping, while stabilizing the cloud environment and geo-replication
across VPN tunnel.

PerformancePig is an in-house load generator that is used for testing Rovio

SyncFree Deliverable D 5.3(v1.1), 4 February 2016, Page 9

4 ESL: CONFIGURATION MANAGEMENT

Total (month): $17 283

amount Type cost / h cost / month total cost / month comments
Ads service nodes, compute 20 EC2 c3.large $0,105 $75,60 $1 512
Ads livestats service nodes, compute 2 EC2 m3.large $0,133 $95,76 $192
Ads RIAK nodes, compute 18 EC2 c3.2xlarge $0,420 $302,40 $5 443
VPN node 2 EC2 c3.large $0,105 $75,60 $151
storage for all nodes 42 EBS Magnetic $0,050 $36,00 $1 512
public IPs 2 EIP $0,005 $3,60 $7
AWS ELB load-balancing, compute 3 tbd $0,025 $18,00 $54
AWS ELB load-balancing, data traffic (per GB) 900 GB $0,008 $5,76 $5 184 estimate
data transfer $1 000 estimate
LOAD GENERATION amount Type cost / h cost / month total cost / month comments
Woodpecker service nodes, compute 10 EC2 c3.large $0,105 $75,600 $756,000
PerformancePig 1 EC2 c3.large $0,105 $75,600 $75,600
storage for all nodes 11 EBS Magnetic $0,050 $36,000 $396,000
shared infrastructure and data transfer $1 000 estimate

Figure 2: Budget calculation for Rovio’s Add counter.

services. Basho bench on the other-hand, load testing tool to specific to Riak. We
plan to use Basho bench for initial cloud setup to verify that the geo-replication
works, et cetera, but not for actual tests. Furthermore, Basho bench is specifically
designed for Riak performance test and it cannot be used for Rovio services.

3.4 Budget calculation

The infrastructure budget calculation considering a peak load of 8 000 request/second
is presented in the following table. All calculation are computed on a monthly basis
considering the current Amazon prices.

3.5 Further evaluation

In addition to executing the here described environment, Rovio will expose APIs
to its LiveStats node to the other Syncfree partners to run their own tests. These
APIs will be separate from Rovio’s internal API for obvious security reasons. The
Ad Service node will not be accessible to other partners. The details of the tests to
be conducted by other partners will explained in a separate document.

4 ESL: Configuration management

4.1 Brief overview of ESL’s contributions

ESL joined to SyncFree consortium at M24 in order to strengthen the Erlang exper-
tise, to ensure industrial standards, to help in tooling and to evaluate and exploit
Antidote. Since M24 ESL reviewed the implementation of Antidote and gave lessons
on Erlang best practices allowing the consortium to refine the current implementa-
tions.

ESL expects benefit from SyncFree project result in Wombat’s commercial ex-
ploitation as a new feature will be developed as part of SyncFree activities. ESL will
strongly contribute to WP5 fulfilling many objectives of T 5.2 and T 5.3 detailed
as follows.

Objectives of T5.2 will be delivered as part of D5.2 deliverable by ESL:

SyncFree Deliverable D 5.3(v1.1), 4 February 2016, Page 10

4 ESL: CONFIGURATION MANAGEMENT

• ESL will develop two approaches to global configuration management;

• ESL will compare the two approaches along several axes, e.g., performance,
guarantees, code quality, or ease of development. Standardised metrics (such
as ISO 9126) will be used to evaluate the complexity, reliability, and maintain-
ability of the rebuilt code in comparison to the original application code. User
satisfaction surveys will take into account the point of view of the application
developers.

Objectives of T5.3 will be delivered as part of D5.3 deliverable by ESL:

• ESL will plan and design the evaluation of the approaches to configuration
management including the rationale of its design parameters and ensuing re-
source costs;

• ESL will include scenarios with varying network topologies, and diverse failure
modes to its evaluation plan;

• ESL will reveal the value for money of the expected results, and the business
case.

Objectives of T5.3 will be delivered as part of D5.4 deliverable by ESL:

• ESL will perform the evaluation and assess its result. The assessment will
include the observations of the behaviour of Antidote over large numbers of
replicas, varying network topologies, and diverse failure modes.

WombatOAM is a product Erlang Solutions has been working on for three years,
originally the result of a STREP FP7 funded project. ESL has over a dozen de-
ployments world wide, and is using it internally as the foundation to all the support
and development work ESL does for customers. ESL is expanding WombatOAM by
placing all generic operations and maintenance functionality which can be reused
across projects and industry verticals. Generic functionality which exists to date in-
clude notifications (logs), metrics and alarms. The next two major features include
configuration management and software upgrade during runtime, without taking
down the system.

4.2 Problem description

Configuration management in large scale, distributed systems where network con-
nectivity is unreliable and clusters span across data centers is today often limited
to static files created and deployed at startup. Obviously, there are some existing
approaches, but all of them are limited. Namely, they can only do offline and re-
quire a soft restart of the system. They rely on strong consistency, which cannot
be both consistent and available because the distributed system is prone to failures.
Therefore, the industry cannot rely on them. Instead, changing configuration after
the initial deployment is often done in the business logic of the system, forcing
developers to write their own layers to guarantee consistency.

Even though the developers do their best, there are scenarios that cannot be
avoided using the existing approaches. Consider the scenario when the propagation

SyncFree Deliverable D 5.3(v1.1), 4 February 2016, Page 11

4 ESL: CONFIGURATION MANAGEMENT

is not done completely due to network issues. Thus, some nodes with the old
configuration remain in the cluster, whilst the other nodes use the new configuration.
This situation results in a misconfigured system, which is hard to correct and can
easily cause service degradations.

How can an operation team change the configuration parameters in a cluster
consisting of thousands of nodes in different geographical regions without restart-
ing the system? How can the consistency across these nodes be guaranteed, even
when the network is unreliable? And how can the propagation be monitored and
inconsistencies among nodes be detected? The correctness of these operations is
critical, as human mistakes and infrastructure errors can result in system outages
in the best of cases and incorrect behaviour in the worse. Also, it is time critical,
because until the propagation of the configuration data is completed, the system
will be in an inconsistent state. An automated approach which both propagates the
information and monitors consistency is required. ESL believes CRDTs and causal
consistency is the right approach to solve the problem.

Erlang/OTP has node configuration on an application basis which can be changed
during runtime. They are called application environment variables. Today, any
changes in these environment variables needs to be done and persisted in the busi-
ness logic of the system. That means the problem is (if at all), solved in every
system, reinventing the wheel. In some cases, the changes are done manually di-
rectly in the Erlang shell and by editing the configuration files.

4.3 Requirements

It should be possible to change global configuration parameters in clusters consist-
ing of thousands of nodes running in clusters spread across different geographical
regions. These changes could be initiated centrally through the Wombat Console.
They should propagate across all nodes as quickly as possible, and be able to with-
stand packet loss and network partitions.

It should be possible to automatically detect any inconsistencies among the
nodes. If the values of a certain global configuration parameter are different in
clusters then it is an anomaly, and the inconsistency should be immediately re-
ported to users. This monitoring functionality could be the part of WombatOAM,
which should raise an alarm automatically when different values are set to any
global configuration or a global configuration is missing from any node of the clus-
ter. The alarm should be cleared automatically when the values of all the global
configurations are the same and also set on all nodes.

4.4 Business Case, Necessity

There are many OAM tools for the mainstream programming languages and generic
monitoring and deployment tools. None of them, however, are Erlang specific and
take advantage of its programming model. This is a real issue as Erlang drives the
telecom industry (e.g. Ericsson), large betting portals (e.g. Bet365, WIlliam Hill),
market leading payment providers (Klarna), gaming engines (MachineZone) and
online ad services (AdTech, OpenX, AddRoll). ESL wants to satisfy the customers
needs by introducing the configuration management feature in its existing OAM

SyncFree Deliverable D 5.3(v1.1), 4 February 2016, Page 12

4 ESL: CONFIGURATION MANAGEMENT

tool, called WombatOAM. It shall enable safely changing parameters in large-scale
clusters to avoid outages. Configuration management is one of the required features,
which, once it works, will lead the way to automated dynamic software upgrade and
orchestration.

80% of Erlang Solutions revenue comes from professional services. ESL’s own
products are critical in changing the company from a times and material one to
recurring revenue based model. WombatOAM allows ESL to remain focused on its
core business whilst making this transition.

ESL expects the ability to manage configuration management in an innovative
way to allow ESL to double its sales of Wombat to about 400,000 GBP in the
12 months which follow the deployment of the functionality. ESL expects this
as an enabler to initiate conversations with enterprise customers who are running
thousands of nodes in production. ESL’s largest customer currently runs 200 nodes.

4.5 Assessment From A Real Customerś Perspective

Illustrating the prominence of the issue, ESL presents the configuration updating
process of one of its customers. ESL emphasises that other customers face similar
problems. One of ESLs customers currently change their application environment
variables during software upgrades using word documents. They have to do it man-
ually on every node by entering the shell and calling application:set env(...).
The engineers performing this task often have no Erlang expertise. To ensure the
values persist after a restart, they also need to change a configuration file, manually,
through cut and paste from a word document. Their process is tedious, error prone,
and has caused outages.

Another customer, one of the major telcos in their country of operation, engaged
ESL to write a system which would gather configuration parameters across systems
they had deployed in different data centers, raising alarms when parameters dif-
fered. When running the system the first time, ESL discovered that half of their
equipment was not configured correctly and was unable to send alarms in case of
malfunction. They could have lost half of their processing capacity and only discov-
ered it when customers would have dialed in and complained of service malfunction.
This happened despite their configuration procedures being fully automated.

4.6 Evaluation

As described above, ESL wants to develop an approach to global configuration
management that ensures the causal consistency of these values. The approach will
be implemented by the ESL developers, and will be built on the top of the current
architecture1, which is a centralised, tree based approach. After that, the approach
will be rebuilt by the ESL developers in a decentralised manner that relies on
Antidote. The rebuilt approach will use Antidote to store data and also commands,
therefore to instruct the plugins running on the managed nodes indirectly. A report
on the two approaches will be part of the D5.2 deliverable, whilst the realisation of
the approaches will be presented as part of D5.2.1.

1RELEASE Project. Deliverable D4.5: Scalable Infrastructure Performance Evaluation report,
March 2015.

SyncFree Deliverable D 5.3(v1.1), 4 February 2016, Page 13

4 ESL: CONFIGURATION MANAGEMENT

The decentralised approach will be evaluated to observe the behaviour of Anti-
dote over large numbers of replicas, varying network topologies, and diverse failure
modes. As part of the evaluation ESL wants to investigate

• how the configuration management can exploit the CRDT concept;

• how Antidote can accommodate itself to requests arriving in bursts;

• the scalability capabilities of Antidote in terms of size of replica; and

• resilience and network partitions.

Last but not least the experiments ESL wants to perform will reveal business
critical information essential for ESL’s customers. If customers would prefer the
decentralised approach relying on Antidote in order to minimise propagation failures
due to network issues, they will have extra costs. Namely, the cost of hosting the
Antidote nodes. Therefore, the increase in the overall reliability in the function of
the Antidote nodes needs to be known to select the configuration best fitting to
their needs. For instance, an increase of five per cent isn’t worth the extra cost of
hosting more Antidote nodes for some customers, whilst it is essential to ensure the
normal operation of the others’ business. Determining this information is the real
value of the experiments, since it leads to commercial exploitation. Therefore, it
appropriately justifies the expenses.

4.7 Hypothesis

The aim of the experiments will be to validate the following hypotheses.

The prominence of the benefits provided by Antidote in terms of re-
silience and network partitions will be increased in the function of the
number of the Antidote nodes.

These experiments will validate that the success of the propagation driven by Anti-
dote can be entrusted even if unexpected network issues occur, whilst the centralised
approach will not be capable of reaching the goal – leaving the cluster in an incon-
sistent state.

Antidote is capable of handling requests arriving in bursts.

This experiments will validate that Antidote will not become unresponsive if
the level of load greatly increases.

Besides that, the experiments will provide data allowing ESL to determine how
much increase in the overall reliability can be expected by increasing the number
of Antidote nodes.

SyncFree Deliverable D 5.3(v1.1), 4 February 2016, Page 14

4 ESL: CONFIGURATION MANAGEMENT

4.8 Experiment Description

ESL will carry out the most common system maintenance tasks using WombatOAM,
which will be presented as case studies.

First, ESL will focus on the new capabilities of WombatOAM from the operation
perspective. To this end, ESL will perform experiments checking the maintenance
capabilities: How efficiently can the frequent maintenance operations be performed
using WombatOAM on Riak clusters consisting of hundreds of nodes? For instance,
consider changing the value of a global configuration parameter cluster-wide. This
may be limited to the following changes: modifying the limit of concurrent hand-
offs, changing the port of the Protocol Buffer or activating the consensus subsystem
used for strongly consistent Riak operations.

Second, ESL will evaluate WombatOAM focusing on its troubleshooting capa-
bilities on a cluster built up from hundreds of nodes. After adding the cluster
consisting of nodes with different values set as a global configuration parameter,
WombatOAM shall be able to detect the anomalies. Once anomalies are detected,
alarms will be raised to warn the users.

Using the case studies ESL will

• judge whether WombatOAM’s configuration management is a useful feature
providing valuable support to operation teams;

• determine the recommended number of Antidote nodes in function of the
managed nodes’ count;

• observe how the replication between Data Centers affect the usability of the
configuration management feature;

• observe how Antidote nodes can repair the diverged data after network issues;

• observe how network issues effect Wombat and the plugins (i.e. the ongoing
changes will be completed, the active alarms will describe the current status
of the managed nodes correctly).

ESL will also examine failure scenarios where the following two components
cannot communicate with each other due to network issues:

• WombatOAM with the Antidote nodes;

• WombatOAM with the plugins running on the managed nodes;

• Antidote nodes with the plugins running on the managed nodes;

• Antidote nodes with the rest of their cluster;

• Antidote nodes with the other Data Center.

The assessment of the experiments and the lessons learnt will be reported in
Deliverable D5.4.

SyncFree Deliverable D 5.3(v1.1), 4 February 2016, Page 15

4 ESL: CONFIGURATION MANAGEMENT

4.9 Experiment Design

4.9.1 Variables

For a certain customer the following parameters are given and fixed.

• The number of managed nodes (M). M will vary between 50 and 400 to
simulate different customers.

• The number of configuration parameters per managed node (C). Generally
speaking, C is between 200 and 400. For the sake of simplicity we will assume
that C = 300.

• The number of fallback nodes (F) to which plugins running on a certain
managed node can connect. This parameter has a positive impact on the
overall reliability of the system, however, it also increases the load put on the
Antidote nodes. It will be defined by customers based on their needs. F will
vary between 1 and 3.

• The number of Data Centers (D) the customer hosts to provide its business
worldwide. Generally speaking, D is between 1 and 5, however, ESL will
experiment with the most cases: D = 1 and D = 2 cases.

Based on the functional specification of the decentralised approach the following
estimates related to the Antidote clusters can be made.

• M ∗ C small objects stored in total;

• M ∗ C PUT requests in one burst;

• M ∗ F GET requests periodically,

• M PUT requests coming in bursts each of which invoking M GET requests.

As the estimates forecast, ESL’s use case will use Antidote differently. Instead
of continuous moderate load, long periods with quasi zero load alternating with
short periods with large load can be expected. Therefore, the capacity of Antidote
specifically for ESL’s use case should be determined. The number of managed
nodes connecting to the same Antidote node (ML) can describe the capacity. By
the experiments, we want to determine the maximal ML that enables fast operations
to minimise the resource cost of operating the Antidote nodes.

With M , C, F and ML, the number of Antidote nodes (A) can be determined.

A =

⌈
M ∗ F ∗ C/300

ML

⌉
.

First, ML will be determined based on a very few values set to M . Based
on ESL’s Riak expertise, ESL expects that ML will be around 10. Next, several
experiments will be carried out. Each experiment will use different values set to the
variables, which will be performed multiple times. A selected set of experiments
will be repeated by creating network issues described in the failure scenarios.

The experiments will measure the total time (T) required to a) change the
value of a global configuration parameter on all the managed nodes and b) notice
inconsistencies and then raise alarms in the function of M , F , and D.

SyncFree Deliverable D 5.3(v1.1), 4 February 2016, Page 16

4 ESL: CONFIGURATION MANAGEMENT

Figure 3: Test environment for the Configuration Management use case.

4.9.2 Architecture

The planned experiment is not a live production large-scale test, as ESL believes
that only well-tested, production ready software should be installed by customers.
Neither Antidote nor the decentralised approach of the configuration management
feature is production ready.

Riak is a popular key-value store used by companies building on the top of the
Erlang VM. Therefore, WombatOAM will monitor and configure Riak nodes during
the experiments. Considering production systems, the Riak nodes are never idle, so
a moderate number of requests will be generated by MegaLoad for the Riak nodes.

The set-up of the test environment is sketched in Figure 3.

SyncFree Deliverable D 5.3(v1.1), 4 February 2016, Page 17

4 ESL: CONFIGURATION MANAGEMENT

Figure 4: Budget calculation for ESL’s Configuration management.

4.9.3 Tools

WombatOAM WombatOAM is an operations and maintenance tool for Erlang
systems that has been developed by ESL. It automatically gathers and stores met-
rics, notifications and alarms from the monitored Erlang nodes. That is achieved
by starting non-intrusive agents at the managed nodes.

WombatOAM also played a prominent role in the context of the EU-project
RELEASE. There, the main task of WombatOAM was to provide the scalable
infrastructure for deploying thousands of Erlang nodes. WombatOAM was aimed
at providing a broker layer capable of creating, managing and dynamically scaling
heterogeneous clusters consisting of thousands of Erlang nodes. The challenge was
tackled by introducing the Meta Wombat approach. Meta Wombat is a scalable,
distributed and fault-tolerant approach relying on a tree built from independent
WombatOAMs, which are called as Worker Wombats. WombatOAM is a product
of Erlang Solutions already having satisfied end-users such as EE, Orange, Cisco,
and SQOR.

MegaLoad MegaLoad is a scalable load testing tool that provides automatic
deployment on cloud environments or physical hardware. It allows to simulate a
massive amount of load to stress test a system. The powerful real-time measurement
system provides all the information that is needed to monitor system tests through
a graphical user interface. MegaLoad has proven to be ideal for online business,
SaaS and telecoms companies.

4.10 Budget calculation

As WombatOAM and MegaLoad are proprietorial software, deploying them to pub-
lic computational infrastructures’ resources (e.g., Grid5000, EGI or PRACE) is not
preferred. Instead, ESL will use its private infrastructure to perform experiments
with moderate hardware requirements to reduce the expenses, whilst the other ex-
periments will be performed in the AWS environment.

All calculations are computed considering the current Amazon prices2. Figure 4
shows the calculated budget.

2https://aws.amazon.com/ec2/pricing/

SyncFree Deliverable D 5.3(v1.1), 4 February 2016, Page 18

5 LARGE-SCALE EVALUATION OF LASP

5 Large-scale evaluation of Lasp

Lasp and Selective Hearing are major results of SyncFree’s second year. During
SyncFree’s third year, we will continue to develop both Lasp and Selective Hearing,
to implement industrial application scenarios and to improve the performance, scal-
ability, and functionality. In this context, we will do large-scale evaluation of both
Lasp and Selective Hearing at large scales limited by our budget of EUR 10,000
(ten thousand Euros). The evaluation will be managed by UCL. The budget was
transferred to UCL in the beginning of SyncFree’s third year from the evaluation
budget that was originally attributed to Rovio. Our cost estimates show that this
budget should be sufficient for ramping up to from 1,000 to 10,000 nodes on a com-
mercial infrastructure such as Amazon. The maximum scale depends on how many
problems we encounter during the ramping up process.

Section 5.1 briefly recapitulates Lasp and Selective Hearing. Section 5.2 explains
the four evaluation scenarios we propose to implement. Section 5.3 explains how
we will manage the ramp-up in the most economical manner possible, both in
implementation effort and budget.

5.1 Lasp and Selective Hearing

Lasp and Selective Hearing are explained in detail in Deliverable D4.2. This sec-
tion briefly recapitulates their properties that are relevant for evaluation. Lasp
is a programming model based on using CRDTs as primitive data structures and
composing them using operations derived from functional programming and rela-
tional (database) programming. Our first implementation of Lasp was on a data
center, but our current work is focused on Selective Hearing, which is an execution
model of Lasp that targets an edge network. An edge network consists of a large
set of heterogeneous, loosely coupled physical nodes, of all sizes from data centers,
points of presence, down to individual computers, mobile devices and IoT devices.
Edge computing is an area for which Lasp seems to be particularly appropriate
because there exists currently no general-purpose programming framework for edge
networks.

Selective Hearing uses the Plumtree epidemic broadcast algorithm to ensure
that the Lasp computation progresses despite the typical issues of an edge network,
i.e., intermittent connectivity, node failures, and network dynamicity. Plumtree
successfully combines the resilience of gossip with the efficiency of a spanning tree.
Plumtree is used in industry, for example it is used in Riak for improving robustness.
Lasp and Plumtree are a good match because Lasp tolerates weak message ordering
and intermittent connectivity, which are the exact properties of Plumtree.

To distinguish an edge implementation of Lasp from an implementation that uses
data center nodes, we will call the former “Gossip Lasp” and the latter “Datacenter
Lasp”. This distinction is actually a spectrum, with pure Gossip Lasp at one
extreme and pure Datacenter Lasp at the other extreme. In practice, the system is
tiered with nodes that have varying degrees of computation power and storage. In
the evaluations that we plan to do, we will take this spectrum into account as one
aspect to be evaluated.

SyncFree Deliverable D 5.3(v1.1), 4 February 2016, Page 19

5 LARGE-SCALE EVALUATION OF LASP

5.2 Lasp evaluation scenarios

We plan the following four evaluation scenarios:

• Evaluation of Gossip Lasp as a scalable framework for edge applications. We
will gradually increase the scale of the system with a simulated edge computing
workload. This requires optimization of Selective Hearing and adaptation of
the Plumtree broadcast algorithm to improve scalability. The purpose is to
give a proof of concept that Lasp is a practical platform for edge applications.

• Evaluation of Lasp (both Gossip and Datacenter Lasp) as a scalable appli-
cation framework. This will evaluate the Ad Counter scenario with millions
of clients, using Datacenter Lasp for scalabiity. The best architecture of this
scenario is still to be determined, i.e., what combination of Gossip Lasp and
Datacenter Lasp gives best results. This evaluation requires optimization of
Datacenter nodes used in a Lasp implementation. The purpose is to show
that Lasp is a scalable platform that can take advantage of (some) datacenter
centralization to increase its scalability.

• Evaluation of Gossip Lasp as a practical computation framework. We will
evaluate the expressiveness of Lasp in a large edge computing scenario. We
will implement a computation-intensive workload to be executed on an edge
network using Selective Hearing. The purpose is to show the viability of
Gossip Lasp as a computation framework, even on an edge network with
its dynamic membership and intermittent connectivity. This is important
to demonstrate that centralized data centers are not the only approach for
large-scale computation, since future networks will have a hierarchy of nodes
of different strengths, from large datacenter nodes to numerous small leaf
nodes. For scalability and latency reasons, it will be important to offload
computations from the data center onto the edge network, which is what this
evaluation will test.

• Evaluation of the expressiveness of Lasp language compared to traditional ap-
proaches. We will attempt to answer the question: is it possible to compare
the same application written in three ways: (1) in Lasp, (2) using CRDTs
but without Lasp, and (3) without CRDTs, using traditional distributed pro-
gramming techniques? This will be done in concertation with the evaluations
of (2) and (3) explained elsewhere in this D5.3 report. We remark that this
fourth evaluation is the most speculative of all evaluations we intend to do:
it depends on our progress in improving the expressiveness of Lasp.

At the moment, we consider the Ad Counter scenario as the one most likely to work
out for these evaluations. However, we are also studying the Leaderboard and Wallet
scenarios. We have implemented Leaderboard and it seems to be uninteresting: it
uses a single CRDT without composition. Wallet is much more interesting because
it has atomic transactions with CRDTs, and these transactions can involve not just
money but also goods (like a network of B-to-B applications).

We emphasize that these evaluations assume progress in the implementation of
Lasp and Selective Hearing, which is hard to predict given that Lasp did not even

SyncFree Deliverable D 5.3(v1.1), 4 February 2016, Page 20

5 LARGE-SCALE EVALUATION OF LASP

exist one year ago. In any case, Lasp development is moving very quickly, and any
evaluations we do in the third year will be proof of concept only, because much
more progress will be possible after the SyncFree project ends.

5.3 Scale and ramping up of the Lasp evaluation

Evaluation at large scale is a difficult endeavor. Given our limited resources in
personnel and budget, we will simplify our implementation plan to the greatest
degree. To maximize the relevance and realism of our results, we target a system
with from 1,000 to 10,000 physical nodes as the final, largest step of our evaluation.
We will use the following approach:

• Same infrastructure for all scales. To minimize the implementation effort,
we will do all our evaluations on the same physical infrastructure, namely a
commercial infrastructure such as Amazon. It is impractical to implement
small-scale evaluations on a public infrastructure such as Grid5000 and use a
commercial infrastructure only for the largest scale. This is not just because
it increases the implementation effort, but also because new bottlenecks ap-
pear at each step, and changing the infrastructure will invalidate much of
our reasoning on predicting and solving the “next” bottleneck. Because the
ramp-up is exponential, it is only the final step of the ramping up that will
consume the lions part of the budget. The decision to use only commercial
infrastructure for all steps therefore will have little effect on the budget.

• Judicious use of simulation, but not for the largest scale. Before going to large
numbers of physical nodes, we will if necessary take the step of using large
numbers of simulated nodes. This will help us identify bottlenecks due to
the Lasp implementation itself. The early, smaller evaluations will be done
on small numbers of physical nodes and larger numbers of simulated nodes.
However, it is clear that simulation cannot be our final stage: a real system
differs significantly from a simulation. The only way to test true scalability is
on large numbers of physical nodes. The bottlenecks of real hardware do not
appear in a simulation unless the simulation is ridiculously detailed, and in
that case it would use at least as many physical nodes as the real execution.

• Identifying and solving bottlenecks is critical. We will start with small number
of nodes and ramp up in incremental factors. At each new scale, we expect new
bottlenecks to appear that will require new design and implementation work.
The final result that we will be able to achieve before the end of the SyncFree
project depends on our ability to identify and solve these bottlenecks.

• Stability of the large-scale infrastructure is critical. Our practical experience
shows that it is difficult to keep a steady state of hundreds of physical nodes
working together online, nevermind our ultimate goal of 10,000 nodes. This is
true on all infrastructures we have used, including commercial infrastructures
such as an Amazon cloud. A significant part of our work will be needed to
manage the instability of cloud infrastructures at this scale.

SyncFree Deliverable D 5.3(v1.1), 4 February 2016, Page 21

5 LARGE-SCALE EVALUATION OF LASP

5.4 Final remark

As a final remark, we are in the process of contacting companies interested in using
Lasp in different edge scenarios, including scenarios that use data center nodes as
well as scenarios in Internet of Things. We are currently in contact with several
companies that are working on edge networks in the area of Internet of Things.
One of the goals of our large-scale evaluations is to convince them of the viability
of our approach.

SyncFree Deliverable D 5.3(v1.1), 4 February 2016, Page 22

	Executive Summary
	Large-Scale Evaluation inspired by the FMK application
	Large-Scale Evaluation inspired by the FMK application
	Tools

	Rovio: Ad Counter
	Hypothesis
	Experiment Description
	Experiment Design
	Variables
	Architecture
	Measurement tools

	Budget calculation
	Further evaluation

	ESL: Configuration management
	Brief overview of ESL's contributions
	Problem description
	Requirements
	Business Case, Necessity
	Assessment From A Real Customers Perspective
	Evaluation
	Hypothesis
	Experiment Description
	Experiment Design
	Variables
	Architecture
	Tools

	Budget calculation

	Large-scale evaluation of Lasp
	Lasp and Selective Hearing
	Lasp evaluation scenarios
	Scale and ramping up of the Lasp evaluation
	Final remark

