Sync
FREE

Project no. 609551
Project acronym: SyncFree
Project title: Large-scale computation without synchronisation

European Seventh Framework Programme
ICT call 10

Deliverable reference number and title: D.2.2.2
CRDTs and CRDT composition
in partial-replication setting

Due date of deliverable: April 1, 2015

Actual submission date: April 1, 2015

Start date of project: October 1, 2013

Duration: 36 months

Name and organisation of lead editor

for this deliverable: Technische Universitat Kaiserslautern
Revision: 0.1

Dissemination level: PU

SyncFree Deliverable D.2.2.2(v0.1), April 1, 2015

CONTENTS

Contents
(1 Executive summary| 1
2__Milestones and Tasks| 3
[3 Contractors contributing to the Deliverable| 4
BI KO 4
B2 INRIAL 4
B3 Touvainl oo 4
B4 Noval 4
B5 Trforkl 4
4_Results 5
4.1 Antidotel 5
4.1.1 How to install and test Antidotel. 6
41.2 Interfacelo 7
4.1.3 Additional Features/. 0L 8
[4.1.4 Benchmarking 9
[4.2 Partial Replication| 0000 11
[4.3 Adaptive Replication| 0oL 12

SyncFree Deliverable D.2.2.2(v0.1), April 1, 2015, Page 2

1 EXECUTIVE SUMMARY

1 Executive summary

This report, Deliverable D.2.2.2, accompanies the software deliverable including
the code for the project’s reference platform. In this report, we give an overview of
the software deliverables. We describe the general architecture and the interaction
between the components. We also give hints on how to install, deploy and run the
software.

The software for this deliverable has been developed as part of our common
research platform, Antidote. The initial version of Antidote, delivered at M12 in
Deliverable D 2.1, comprised a geo-replicated causally-consistent data store with
transactional support for CRDTs. The underlying protocol is an extension of the
ClockSI protocol for multi-DC support and partitioning [3]. During the last re-
porting period, we have developed and implemented the following extensions to the
Antidote platform.

Reference protocols To study the advantages and usability of different proto-
cols for supporting causally consistent data stores, we have implemented two other
protocols for geo-replicated data stores from the literature in the Antidote plat-
form: Gentlerain [4] and Eiger [6]. Their implementation required only few changes
in the interface and logging layer; the transaction and replication layer have been
re-implemented for each reference protocol.

Having implementations of these protocols on the same platform allows us to
run benchmarks against the same interface, and to evaluate their differences using
the same programming language and runtime environment.

Partial replication protocol The protocols described in the previous paragraph
assume that each DC instance replicates all entries in the data store. Antidote also
runs now a new protocol which we designed especially for this deliverable, named
Charcoal, supporting partial replication. This means that a DC replicates only
(potentially overlapping) subsets of the universe of data. The Charcoal protocol
builds on a number of components from the first Antidote prototype, such as logging
and materialization of CRDT objects, and extends the framework with its specific
consistency, transaction and replication components.

Bounded Counter CRDT Antidote supports besides the PNCounter CRDT
allowing arbitrary numbers of increments and decrements now also a Bounded-
Counter CRDT. This bounded CRDT is able to maintain a non-negative value by
explicitly exchanging permissions between DCs to execute decrement operations.

Protocol Buffer interface Similarly to riak, Antidote now provides a Protocol
Buffer interface E] to support the development of data store clients. Using this
standardized message serialization format, clients can interact with the data store
in a simple way. The interface has been implemented so far on the server side with

!Protocol buffers are a language-neutral, platform-neutral, extensible mechanism for serializing
structured data, developed by Google. Since its initial release in 2008, protocol buffers have been
widely adopted for communication in distributed systems.

SyncFree Deliverable D.2.2.2(v0.1), April 1, 2015, Page 1

1 EXECUTIVE SUMMARY

an Erlang client library. Supporting other client programming languages, such as
Java, will be added in the future.

Applications and Benchmarks To evaluate the Antidote platform, we imple-
mented a selection of benchmarks and applications. Besides synthetic read and
write workloads on random selections of objects, we implemented the wallet ap-
plication selected in Work Package 1 (WP1) as use case, and a prototypical social
network application. For the evaluation, we employ tools that were developed the
WP5 deliverable D.5.1., such as basho_bench or deployment scripts for Amazon
Web Services (AWS EC2).

Adaptive replication Building on components from the Antidote platform, we
have also developed a prototype of Adaptive Replication, described in (author?)
[1]. It provides a directory service, which maintains information about the distribu-
tion of replicas across the DCs. At each DC, a simple KV store serves as backend
for the adaptive replication module. A replica manager forwards read requests and
updates to either the local data store or to a remote DC. Our prototype version
currently does not support transactions, but allows us to focus on the replication
strategies, role of parameters and the different consistency requirements of the di-
rectory component as we described in the WP2 deliverable D.2.2.1.

All software can be found on the project’s open source repository at

https://github.com/SyncFree/.

SyncFree Deliverable D.2.2.2(v0.1), April 1, 2015, Page 2

https://github.com/SyncFree/antidote

2 MILESTONES AND TASKS

2 Milestones and Tasks

WP2 has reached the following milestones:

Mil. | Milestone name WP | Date | Actual

no due date

S1 CRDT consolidation in a static environment | WP2 | M12 M12

S2 Extended guarantees and composition in a | WP2 | M24 M18
dynamic environment

The corresponding tasks are:

Task | Task name Date | Actual| Leader

no due | date

D.2.1.1| Protocols for CRDT's in small-scale full repli- | M6 M12 KL
cation

D.2.1.2| Platform for CRDTs in small-scale full repli- | M6 M12 KL
cation

D.2.2.1| Protocols for CRDTs and CRDT composi- | M12 | M18 KL
tion in partial-replication setting

D.2.2.2| Platform for CRDTs and CRDT composition | M12 | M18 KL
in partial-replication setting

Shifting of target dates

Several of the main developers on WP2 could only be

recruited and employed in February 2014. This caused a delay of several months.
Familiarization with the project led to another delay of some weeks. Thus, the
design and development of Antidote started effectively in March/April 2014. The
SyncFree EB decided to shift the M6 and M12 deliverables for WP2 by 6 months.

SyncFree Deliverable D.2.2.2(v0.1), April 1, 2015, Page 3

3 CONTRACTORS CONTRIBUTING TO THE DELIVERABLE

3 Contractors contributing to the Deliverable

The following contractors contributed to the deliverables

3.1 KL
Annette Bieniusa, Deepthi Akkoorath.

3.2 INRIA
Alejandro Tomsic, Tyler Crain, Marc Shapiro.

3.3 Louvain

Manuel Bravo, Zhongmiao Li.

3.4 Nova

Diogo Serra, Nuno Preguica.

3.5 Trifork

Amadeo Ascé.

SyncFree Deliverable D.2.2.2(v0.1), April 1, 2015, Page 4

4 RESULTS

4 Results

In the following, we give a short introduction to the individual software deliverables
in D2.2.1.

4.1 Antidote

Antidote is a geo-replicated CRDT data store which features scalable, conflict-
free implementations of transactions, by providing consistent, stable snapshots and
atomic multi-CRDT updates. It provides Transactional Causal4+ Consistency, of-
fering the following guarantees:

e A transaction reads a causally consistent snapshot;

e Updates of a transaction are atomic (all-or-nothing) and durable (later trans-
actions observe this transaction’s updates); and

e Concurrently committed updates do not conflict (CRDT property).

Under Transactional Causal+ Consistency, clients can observe the same set of
concurrent updates, but applied in different orders. To avoid divergence, we assume
that concurrent updates are mergeable (CRDT approach). Mergeable transactions
commute with each other and with non-mergeable transactions, which allows to
execute them immediately in the cache, commit asynchronously in the background,
and render the system available even in failure scenarios. For the Antidote data
store, we offer mergeable transaction in the form of read-only transaction or up-
date transactions that modify CRDTs. Future work (in collaboration with WP3)
will extends mergeable transactions with some form of synchronization to maintain
invariants.

The code for Antidote is available at

http://github.com/SyncFree/antidote,

including test cases, example applications and benchmarks.

Architecture One of the design goals of Antidote is a layered architecture with a
clear separation of concerns. This will allow to experiment with different approaches
for specific tasks. For instance, the Transaction Layer is in charge of implementing
protocols for retrieval and commit of objects and their updates according to the
respective transaction semantics. Examples for adaptations of Antidote are the
reference protocols and the Charcoal protocol, which we describe in detail in later
sections.
Figure [I] shows the layered architecture of Antidote.

Log Layer Antidote uses a log-based backend to provide fast and fault-tolerant
write access and efficient management of multi-versioning for CRDT objects. The
log layer immediately accepts all operations it receives. At any DC, each partition
maintains its own log.

SyncFree Deliverable D.2.2.2(v0.1), April 1, 2015, Page 5

http://github.com/SyncFree/antidote

4 RESULTS

PB interface

Transaction Manager InterDC replication |——
propagate to
other DCs

write through Materializer append| read
read
Log

Figure 1: Architecture of Antidote.

Materializer The responsibility of the materializer is to generate snapshots of
objects by applying operations and to improve performance by caching operations.
To achieve these goals, each partition runs a materializer process with an in-memory
cache, represented in the form of a key-value store mapping the key to recent ver-
sions of a CRDT object.

Transaction Manager The transaction layer coordinates read and update oper-
ations involving multiple partitions. The current standard implementation provides
Transactional Causal+ Consistency semantics with mergeable transactions.

InterDC Replication Layer This communication layer is responsible for deliv-
ering every successfully committed transaction to other DCs as well as receiving
and applying transactions from remote DCs at the local DC. Since applying up-
dates requires consistency checking, which depends on the transactional semantics,
this module is coupled with the transaction manager. We currently provide several
implementations for the InterDC layer (and corresponding transactional manager)
to support ClockSI, GentleRain and Charcoal.

PB Interface Clients interact with Antidote using a Protocol Buffer interface.
This layer exposes single object read and write as well as multi-object read/write
with transactional semantics, as described above, to the clients. A client library
in Erlang is also provided. Section contains an overview of the interface and
presents an example of how an Erlang client program can access Antidote.

4.1.1 How to install and test Antidote

e Prerequisites

1. An Unix-based OS.

SyncFree Deliverable D.2.2.2(v0.1), April 1, 2015, Page 6

4 RESULTS

create_crdt (key,type) — ok
get_crdt (key, type) — crdt
store_crdt (crdt) — ok
snapshot_get_crdts — ([{key,type}|, clock) — [erdt]
atomic_store_crdts ([crdt]) — {0k, clock}
begin_tzn (clock) — tenld
get_crdt_tzn (key, type, tznld) — crdt
store_crdt_tzn (crdt, tznld) — ok
commit_ten (tznld) — {ok,clock}

Table 1: Client API of Antidote

2. Erlang R16B02

Getting Antidote
From your shell, run: git clone http://github.com/SyncFree/antidote

Building Antidote

1. Go to the antidote directory.

2. Run make stagedevrel.

Setup riak test for Antidote
1. Clone https://github.com/SyncFree/riak_test| into another direc-
tory, called here RIAK_TEST.

2. Switch to the features/csm/antidote branch:
git checkout features/csm/antidote

3. Change to the RIAK_TEST directory and run make.

Running tests To execute all tests, go to the Antidote directory and run make
riak-test. Alternatively:

1. Run to set-up the test environment . /riak_test/bin/antidote-setup.sh (Only
for the first time)

2. Run . /riak_test/bin/antidote-current.sh to start the data store

3. Go to the RTIAK_TEST directory

4. Run an invidiual test with . /riak_test -v -c¢ antidote -t “TEST_-TO_RUN”
TEST_TO_RUN is any test module in antidote/riak_test/
eg:- ./riak_test -v -c antidote -t clocksi_test

4.1.2 Interface

Antidote allows clients to access and update objects in the data store using the API
shown in Table[I] The API is exposed using the Protocol Buffer interface.

e get_crdt: reads an object stored under the key provided. The type parameter
denotes the CRDT type of the object.

SyncFree Deliverable D.2.2.2(v0.1), April 1, 2015, Page 7

https://github.com/SyncFree/riak_test

4 RESULTS

e store_crdt: stores the updates to the CRDT object on the Antidote server.

e snapshot_get_crdts: reads multiple objects from a consistent snapshot satis-
fying transactional causal+ consistency. The parameter is list of key-type
tuples for the respective objects. The optional parameter clock denotes the
last timestamp known to the client. It is used to guarantee monotonic reads
and read your own writes even when the client connects to different data
centers.

e atomic_store_crdts: stores updates on several CRDTs atomically at the data
store. It guarantees that the updates become visible together. It returns the
committed timestamp of the transaction.

In addition to the above interface, Antidote also provides an API for interactive
transactions where clients can start a transaction, execute multiple read and update
operations and then commit. All reads and writes apply to the same snapshot.

Example We have implemented a client library written in Erlang for client pro-
grams to access Antidote based on the Protocol Buffer Interface (https://github.
com/SyncFree/antidote_pb). The following code snippet shows an example of how
an Erlang client can use the library to access Antidote:

{ok, Pid} = antidote_pb_socket:start (?ADDRESS, ?PORT),

{ok, C} = antidote_pb_socket:get_crdt(Keyl, riak_dt_-orset , Pid),

{ok, S} = antidote_pb_socket:get_crdt (Key2, riak_dt_pncounter , Pid),

Cl = antidote_set:add(1, C),

S1 = antidote_counter:increment (2, S),

{ok,_} = antidote_pb_socket:atomic_store_crdts([C1,S1],Pid),

Result = antidote_pb_socket:snapshot_get_crdts ([{Keyl,

riak_dt_orset}, {Key2,riak_dt_pncounter}], Pid),

{ok, _, [Setl, Counter2]} = Result,

antidote_pb_socket :stop (Pid)

After opening a local Protocol Buffer socket, an ORSet CRDT and a PNCounter
CRDT are read. Next, an element is added to the ORSet object, while the PN-
Counter is incremented by 2. Then, both updates are submitted atomically to
the data store server. The following snapshot read should retrieve both updates
together. Finally, the socket is closed and the listening process is stopped.

4.1.3 Additional Features

Bounded Counters In addition to standard CRDT objects, Antidote also sup-
port invariant preserving CRDTs, namely bounded counters. Bounded counters
preserve the invariant that the value of the counter will never be negative, even
with concurrent asynchronous decrements. To this end, bounded counters utilize
the reservation technique developed in WP3 (see D3.1 and [2]). In addition to stan-
dard counter operations such as increment and decrement, the bounded counter
exposes an transfer operation which transfers the reservation to other replicas. A
client that tries to decrement the counter value without having sufficient reserva-
tions will receive an error response, upon which it can request a reservation transfer
operation. If the transfer operation is successful, it can re-issue the decrement
operation.

SyncFree Deliverable D.2.2.2(v0.1), April 1, 2015, Page 8

https://github.com/SyncFree/antidote_pb
https://github.com/SyncFree/antidote_pb

4 RESULTS

Reference protocols The base version of Antidote, delivered at M12 in D2.1, is
built on a protocol for interDC replication which preserves Transactional Causal+
Consistency for mergeable transactions on CRDTs.

In order to compare with state-of-the-art, we have now implemented other simi-
lar protocols from the literature in the Antidote framework. With few small changes
in the interface and logging layer, Antidote now offers alternative transaction and
replication protocols. We have implemented two recent causal consistency protocols
for a geo-replicated partitioned database: GentleRain [4] and Eiger[5]. We adapted
the GentleRain protocol slightly to support causal delivery of updates and sup-
port the operation atomic_store_crdts, because the original protocol only supported
snapshot reads and single writes. In addition, we have implemented a variant of
Antidote that provides only eventual consistency guarantees, to evaluate the over-
head in latency and meta-data size incurred by causal consistency. The code for
the three reference protocols is available at:

e https://github.com/SyncFree/antidote/tree/ec_antidote
e https://github.com/SyncFree/antidote/tree/gentlerain

e https://github.com/SyncFree/antidote/tree/eiger

4.1.4 Benchmarking

In collaboration with WP5, we implemented and adapted a number of tools for
benchmarking the Antidote platform. These tools include scripts for deploying
Antidote on the Amazon Webservice EC2, generating generic and application spe-
cific workloads, as well as collecting, processing and visualizing the results with
basho_bench. This allows for exploration of the throughput, latency and scala-
bility in different scenarios, varying the number of clients, DCs, read and write
operations, etc.

The tools are described in the WP5 deliverable D5.1 in more detail. Here, we
will only show an example how they can be applied.

Experimental setup We use the benchmark framework basho_bench? The
benchmark is configured to use 100 simulated clients, evenly distributed among
Antidote instances. The benchmark accesses 2000 keys with Pareto distribution.
basho_bench issues transactional operations to Antidote. In our use case here, each
read or write transaction is indeed a transaction reading or updating a single key.
The read/write ratio is 10:1. We run all our experiments with Amazon EC2 in-
stances. Fach Antidote replica (which can be either a partition of a data center or
can be a whole data center, which will be explained later) are hosted on an EC2
m3.large instance, while basho_bench runs on an EC2 c4.xlarge instance.

Throughput and latency of a single Antidote instance In the following, we
show the throughput and latency of a single Antidote instance (i.e., a data center).
Figure [2| shows that the throughput of Antidote under the described workload is

2https://github.com/basho/basho_bench

SyncFree Deliverable D.2.2.2(v0.1), April 1, 2015, Page 9

https://github.com/SyncFree/antidote/tree/ec_antidote
https://github.com/SyncFree/antidote/tree/gentlerain
https://github.com/SyncFree/antidote/tree/eiger

4 RESULTS

about 4000 transactions per second and it is stable over a three-minute duration.
Figure 3| gives the mean, median and 95th percentile latency for append (i.e. up-
date) and read, respectively. The latency is also stable over the duration of the

benchmark.

Figure 2: Throughput of an Antidote instance.

Throughput

4000-

3000 -
b Response
92000 - = error
OD' = ok

1000 -

0 -
50 100 150
Elapsed Secs
Figure 3: Latency of append and read operations.
Mean, Median, and 95th Percentile Latency
append read
30 e — P N B

@,

gﬁﬁ' Percentile

- W 95th

2 = mean

a_) '

E 10 - median

0- . .
50 100 150 50 100 150

Elapsed Secs

Scalability We also evaluated the scalability of Antidote w.r.t. the number of
partitions of a single data center and the number of Antidote instance. The following
table gives the throughput of a single Antidote data center with different numbers

of partitions.

Number of partitions 1 2 4 8
Throughput(txn/s) | 3812 | 6115 | 11005 | 14922

SyncFree Deliverable D.2.2.2(v0.1), April 1, 2015, Page 10

4 RESULTS

The throughput of Antidote scales linearly with the number of partitions up to 4
partitions. However, scalability is reduced when adding more partitions. A careful
investigation of the log files showed that in this specific run this problem happened
due to a high clock skew on a single machine that forces the ClockSI transaction
protocol to wait. A transaction started in a partition with a fast clock waits for
another partition with a slower clock. In order to overcome this issue, a solution
would be to force the transaction to read from an older snapshot by assigning older
timestamp as its snapshot time.

The next table shows the overall throughput of multiple connected Antidote
data centers, each consisting of a single partition/machine.

Number of datacenters 1 2 4 8
Throughput(txn/s) 3812 | 7651 | 14831 | 23636

Here, Antidote scales almost linearly with the number of data centers. This is
expected, because our inter-DC causal consistency protocol is asynchronous, there-
fore it allows DCs to process requests individually without interaction with other
DCs. Updates are propagated asynchronously in the background.

4.2 Partial Replication

Antidote’s base protocol from D2.1. does not support partial replication. For
this deliverable, we developed a new protocol, named Charcoal, in the Antidote
framework. To support partial replication, some components had to be redesigned.
This section describes how the Antidote code base was modified to support partial
replication. The source code can be found on the SyncFree GitHub repository at

https://github.com/SyncFree/antidote/tree/partial_replication/.

The data store with partial replication can be built and tested using the same
interface and tools as the version with Antidote’s base protocol.

Unmodified components The log and materializer were left unmodified. Al-
though, not all objects are logged and materialized at any given DC, this distinction
is handled at the higher layers, thus allowing the log and materializer code to remain
the same.

Modified components Inside a DC, the transaction manager ensures that a
transaction accesses and update consistent view of the data. The transaction layer
consists of two main components, one for transaction execution, through which a
client interacts with the system, and one for an ordering component, which assigns
timestamps and vector clocks to maintain an ordering locally and to keep track of
dependencies between transactions.

Since the transactions under partial replication provide the same semantics as
under the full replication protocol, major parts of the code for transaction execution
remained kept the same. The main modification is to allow the transaction to
read and update objects not replicated at the DC where the transaction is being
executed. When performing a read operation on a locally non-replicated key, the

SyncFree Deliverable D.2.2.2(v0.1), April 1, 2015, Page 11

https://github.com/SyncFree/antidote/tree/partial_replication/

4 RESULTS

read request is forwarded to another DC that does replicate the key, The returned
result is cached at the local DC. Updates to non-replicated keys are also stored
locally to ensure durability under network partitions, but are flagged to ensure they
are included in future reads and are materialized correctly. Like in full replication,
a transaction receives a scalar timestamp assigned at the local DC and use a vector
clock to track dependencies. However, this dependency vector clock is now assigned
by the safe-time collector (a new component described below).

The interDC replication component also needed modification to support partial
replication. At the sending DC before propagating an update, the sender checks
which DCs replicate the update, using the replication check component (a new
component described below). The receiving DC may partition keys differently than
at the sender, therefore, the updates of the transaction are forwarded to their correct
partition. Whereas, Antidote’s base protocol uses hearbeats to keep track of when
data is safe to read, in Charcoal, the safe-time collector is used.

New components The replication check component maps a key to the set of
DCs where the key is replicated. In the Charcoal protocol, the replication scheme
can be defined specifically for each key, or can use a pre-defined function.

At each DC, a new process listens for incoming read requests from other DCs.
These DCs may request materialized objects for keys that they do not replicate
themselves. These read request are different from normal reads performed directly
by clients, as the reply includes specific meta-data for replica management that
should not be sent to the client.

Finally, a safe-time collector runs at each DC. At fixed intervals, it asks every
server in its DC to return the maximum time for which this server has sent all com-
pleted updates to the other DCs. It then computes and sends safe time notifications
to each external DC, allowing new transactions to safely read these updates.

4.3 Adaptive Replication

We implemented a prototype for our work on adaptive replication, we developed
a prototype for supporting adaptive replication in geo-distributed key-value stores.
Re-using major parts of the Antidote platform, we designed several components and
interfaces which together manage the placement of replicas among DCs. Figure
sketches the organization of the system for a single DC.

The client interface accepts and answers requests from clients. It is responsible
for the session coordination. Depending on the internal DC-local structure of the
data store (e.g. partitioning), it forwards the incoming requests to an internal
server, here named replication coordinator.

The replication coordinator deals with all information regarding replication of
objects. It is parametrized by a strategy for installing or removing local object
replicas, based on the frequency of (local) read and (local and global) write requests.
Accordingly, it either processes the request locally, or it forwards the request to a
DC that replicates the object.

Information about replica placement is maintained by a global directory service
(not represented in the figure).

SyncFree Deliverable D.2.2.2(v0.1), April 1, 2015, Page 12

4 RESULTS

Client interface

InterDC

Replication rdinator -
eplication coordinato communication

Strategy

Backend: Data store

Figure 4: Architecture of the Adaptive Replication component.

The interDC communication forwards requests to other DCs and processes the
response, possibly returning information to the replication manager. As in Anti-
dote’s base version, it also listens for updates to local replicas that have been issued
at other DCs and applies them to the local data store. Similarly, it also forwards
local updates to the other DCs.

Status This proof-of-concept prototype is intended to investigate which compo-
nents needed to be modified and adapted to support adaptive replication in a data
store.

Our prototype platform can be found at

https://github.com/SyncFree/adpreplic

The code base currently contains only the basic functionality and is currently still
under development. In particular, it is missing important features to make it appli-
cable in practice. For example, the directory containing the placement information
for the objects is needs to be implemented in partition- and fault-tolerant way.

SyncFree Deliverable D.2.2.2(v0.1), April 1, 2015, Page 13

https://github.com/SyncFree/adpreplic

REFERENCES

References

1]

Amadeo Ascé and Annette Bieniusa. Adaptive strength geo-replication strategy.
In Proceedings of the Workshop on Principles and Practice of Consistency for
Distributed Data, PaPoC ’15, New York, NY, USA, 2015. ACM.

Valter Balegas, Diogo Serra, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues,
and Nuno M. Preguica. Technical report.

Jiaqing Du, Sameh Elnikety, and Willy Zwaenepoel. Clock-si: Snapshot isola-
tion for partitioned data stores using loosely synchronized clocks. In Proceedings
of the 2013 IEEE 32Nd International Symposium on Reliable Distributed Sys-
tems, SRDS 13, pages 173-184, Washington, DC, USA, 2013. IEEE Computer
Society.

Jiaqing Du, Calin Torgulescu, Amitabha Roy, and Willy Zwaenepoel. Gentlerain:
Cheap and scalable causal consistency with physical clocks. In Ed Lazowska,
Doug Terry, Remzi H. Arpaci-Dusseau, and Johannes Gehrke, editors, Proceed-
ings of the ACM Symposium on Cloud Computing, Seattle, WA, USA, November
03 - 05, 2014, pages 1-13. ACM, 2014.

Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno M Preguica,
and Rodrigo Rodrigues. Making geo-replicated systems fast as possible, consis-
tent when necessary. In OSDI, pages 265278, 2012.

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.
Stronger semantics for low-latency geo-replicated storage. In Nick Feamster
and Jeffrey C. Mogul, editors, Proceedings of the 10th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2013, Lombard, IL, USA,
April 2-5, 2013, pages 313-328. USENIX Association, 2013.

SyncFree Deliverable D.2.2.2(v0.1), April 1, 2015, Page 14

	Executive summary
	Milestones and Tasks
	Contractors contributing to the Deliverable
	KL
	INRIA
	Louvain
	Nova
	Trifork

	Results
	Antidote
	How to install and test Antidote
	Interface
	Additional Features
	Benchmarking

	Partial Replication
	Adaptive Replication

